Math: Grade 8		
UNIT/Weeks (not consecutive)	Timeline/Topics	Essential Questions
. 8	Real Numbers, Exponents, and Scientific Notation - Integer Exponents - Scientific Notation	- How can you use scientific notation to solve real world problems? - How can you use exponents to model repeated multiplication and division? - How do you develop and use the properties of integer exponents? - How can you use scientific notation to express very large and very small quantities?
5	Proportional and Nonproportional Relationships and Functions - Proportional Relationships - Rate of Change and Slope - Unit Rates and Slope - Nonproportional Relationships - Graphing Linear Relationships	- How can you use linear equations to solve real world problems? - How can you use functions to solve real world problems? - What are some characteristics that you can use to describe functions? - How can you use tables, graphs, and equations to represent proportional situations? - How do you find a rate of change or a slope? - How do you interpret the unit rate as slope?
3	Transformational Geometry - Congruent Figures - Dilations - Similar Figures	- How can you use transformations and congruence to solve real world problems? - How can you describe the effect of a dilation on the coordinates using an algebraic representation? - How do you describe the properties of translation

		and their effect on the congruence and orientation of figures? - How do you describe the properties of reflection and their effect on the congruence and orientation of figures? - How can transformations be used to verify that two figures have the same shape and size? - How do you describe the properties of dilations?
3.8	Measurement Geometry - Parallel Lines cut by Transversal - Angle Theorems for Triangles - Pythagorean Theorem - Converse of Pythagorean Theorem - Distance Formula - Volume	- How can you use angle relationships in parallel lines and triangles to solve real world problems? - What can you conclude about the measures of the angles of a triangle? - How can you prove the Pythagorean Theorem and use it to solve real world problems? - How can you test the converse of the Pythagorean Theorem and use it to solve problems? - How can you use the Pythagorean Theorem to find the distance between teo points on a coordinate plane? - What can you conclude about the angles formed by parallel lines that are cut by a transversal? - How can you determine when two angles are similar? - How do you find the volume of a cylinder? - How do you find the volume of a cone? - How do you find the volume of a sphere? - How can you apply the volume formulas for cylinders, cones, and spheres to real-world problems?

